МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Оренбургской области

Отдел образования администрации Бугурусланского района МБОУ "Баймаковская СОШ"

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДЕНО
Руководитель ТМГ "Единомышленники"	Заместитель директора по УВР	Директор
Котова Т.А. Протокол №1 от «28»	Нестерова Н.В. Протокол №1 от «29»	Литвин Н.С. Приказ №76 от «30» августа 2024 г.

Протокол №1 от «29» августа 2024 г.

Протокол №1 от «28»

августа 2024 г.

Дополнительная общеобразовательная общеразвивающая программа технологической направленности

«Робототехника»

Возраст обучающихся 10-13 лет

Срок реализации: 1 год

«ТОЧКА РОСТА»

Содержание

Раздел 1. Комплекс основных характеристик программы	3
1.1. Пояснительная записка	3
1.2. Цель и задачи программы	5
1.3. Содержание программы	7
1.4. Прогнозируемый результат	18
Раздел 2. Комплекс организационно-педагогических условий	20
2.1. Календарный учебный график	20
2.2.условия реализации программы	20
2.3. Формы аттестации	
2.4. Оценочные материалы	20
2.5. Методические материалы	20
2.6.Список литературы	

Раздел1. Комплекс основных характеристик программы

1.1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Робототехника» имеет технологическую направленность. Программа разработана в соответствии со следующими нормативными документами:

- Закон Российской Федерации «Об образовании» (ФЗ от 29.12.2012 №273-ФЗ);
- Приказ Министерства просвещения РФ от 09.11.2018 №196 «Об утверждении порядка организации и осуществления образовательной деятельностипо дополнительным общеобразовательным программам»;
- Приказ Минпросвещения России от 30.09.2020 №533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства Просвещения России от 09.11.2018 №196»;
- Концепция развития дополнительного образования детей (Распоряжение Правительства РФ от 31.03.2022 №678-р);
- Письмо Министерства образования и науки РФ от 18.11.2015 №09-3242 «Методические рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- Постановление Государственного санитарного врача РФ от 28.09.2020г. СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- Федеральный проект «Успех каждого ребенка» (протокол заседания проектного комитета по национальному проекту «Образование» от 07.12.2018 №3);
- Устав и локальные акты МБОУ «Баймаковская ООШ».

Дополнительная общеразвивающая программа стартового уровня «Робототехника» имеет технологическую направленность. Этот курс связан с робототехникой — это проектирование и конструирование всевозможных интеллектуальных механизмов — роботов, имеющих модульную структуру и обладающих мощными микропроцессорами. В наше время робототехники и компьютеризации детей необходимо учить решать задачи с помощью автоматических устройств, которые он сам может спроектировать, защитить свое решение и воплотить его в реальной модели, то есть непосредственно сконструировать и запрограммировать.

Актуальность и практическая значимость данной программы обуславливается тем, что полученные на занятиях творческого объединения знания становятся для ребят необходимой теоретической и практической

основой их дальнейшего творчества, выборе будущей профессии, в определении их дальнейшего жизненного пути. Овладев навыками сегодня, учащиеся смогут применить их с нужным эффектом в дальнейшей трудовой деятельности. Дополнительная общеобразовательная программа помогает раскрыть творческий потенциал учащегося, определить его резервные возможности, осознать свою личность в окружающем мире, способствует формированию стремления стать мастером, исследователем, новатором.

Новизна программы заключается в занимательной форме знакомства робототехники, учащегося основами радиоэлектроники программирования микроконтроллеров ДЛЯ роботов шаг за шагом, практически с нуля. Избегая сложных математических формул, на практике, через эксперимент, учащиеся постигают физические процессы, происходящие в роботах, включая двигатели, датчики, источники питания и микроконтроллеры NXT.

Программа **педагогически целесообразна** т.к. в ней предусмотрены различные виды конструктивной деятельности детей: конструирование из различных видов конструктора, программирование NXT-G, разработка проектов. В процессе конструирования и программирования дети получат дополнительное образование в области физики, механики, электроники и информатики.

Данная программа **стартового уровня** рассчитана на один год обучения, адресована учащимся от 10 до 13 лет. Группы разновозрастные и формируются на добровольной основе.

Объем программы – 68 часов.

Режим занятий:

Стартовый уровень, дети 10-13 лет – 1 раз в неделю по 2 часа в течении учебного года (68 часов).

Занятия продолжительностью 45 минут с перерывом 5-10 минут между занятиями.

Количество учащихся в группе: 10-15 человек.

Форма обучения: очная.

Описание форм и методов проведения занятий

Для реализации программы используются такие педагогические технологии:

- Личностно-ориентированное обучение
- Проектная деятельность
- ИКТ-технологии
- Игровые технологии

ИКТ: особенности методики — компьютерные средства обучения называют интерактивными, они обладают способностью «откликаться» на действия ученика и учителя, «вступать» с ними в диалог, что и составляет главную особенность методик компьютерного обучения.

Технология проектного обучения: в основе метода лежит развитие познавательных навыков учащихся, умений самостоятельно конструировать свои знания и ориентироваться в информационном пространстве, развитие критического мышления. Метод проектов всегда ориентирован на самостоятельную деятельность учащихся — индивидуальную, парную, групповую, которую учащиеся выполняют в течение определенного отрезка времени. Этот метод органично сочетается с групповым подходом к обучению.

Основными принципами обучения являются:

- 1. Доступность предусматривает соответствие объема и глубины учебного материала уровню общего развития учащихся в данный период, благодаря чему знания и навыки могут быть сознательно и прочно усвоены.
- 2. Связь теории с практикой обязывает вести образовательный процесс так, чтобы учащиеся могли сознательно применять приобретенные ими знания на практике.
- 3. Сознательность и активность обучения в процессе обучения все действия, которые отрабатывают учащийся, должны быть обоснованы. Нужно учить детей критически осмысливать и оценивать факты, делать выводы, разрешать все сомнения с тем, чтобы процесс усвоения и наработки необходимых навыков происходили сознательно, с полной убежденностью в правильности обучения. Активность в обучении предполагает самостоятельность, которая достигается хорошей теоретической и практической подготовкой и работой педагога.
- 4. Наглядность объяснение техники сборки робототехнических средств на конкретных изделиях и программных продуктах. Для наглядности применяются существующие видеоматериалы, а также материалы своего изготовления.
- 5. Систематичность и последовательность материал дается по определенной системе и в логической последовательности с целью лучшего его освоения. Как правило, этот принцип предусматривает изучение предмета от простого к сложному, от частного к общему.
- 6. Личностный подход в обучении в процессе обучения педагог исходит из индивидуальных особенностей детей (уравновешенный, неуравновешенный, с хорошей памятью или не очень, с устойчивым

вниманием или рассеянный, с хорошей или замедленной реакцией, и т.д.), и опираясь на сильные стороны ребенка, доводит его подготовленность до уровня общих требований.

На занятиях используются различные формы организации образовательного процесса:

- Работа по подгруппам;
- Групповые;
- Индивидуальные.

Формы проведения занятий:

- Практическое занятие;
- Презентация;
- Конкурсы;
- Самостоятельная работа;
- Соревнования;
- Защита проектов.

Методы обучения:

- Объяснительно иллюстративный;
- Частично поисковый;
- Исследовательский.

1.2. Цель и задачи программы

Цель программы «Робототехника» - формирование у учащихся интереса к техническим видам творчества, развитие конструктивного мышления средствами робототехники.

Задачи:

Метапредметные:

- Развивать научно-технические способности (критический, конструктивистский и алгоритмический стили мышления, фантазию, зрительно образную память, рациональное восприятие действительности);
- Расширять знания о науке и технике как способе рационально практического освоения окружающего мира.

Личностные:

- Формировать навыки работы с различными источниками информации, умение самостоятельно искать, извлекать и отбирать необходимую для решения учебных задач информацию;
- Воспитывать у детей интерес к техническим видам творчества;
- Воспитывать уважительное отношение к труду.

Предметные:

- Формировать устойчивый интерес к робототехнике, способность воспринимать их исторические и общекультурные особенности;
- Обучить решению практических задач, используя набор технических и интеллектуальных умений на уровне свободного использования;
- Научить добиваться высокого качества изготовленных моделей (добротность, надежность, привлекательность);
- Научить составлять программы для роботов различной сложности.

1.3. Содержание программы

1.3.1. Учебно – тематический план

№	Наименование разделов и тем	Общее количество часов	Теория	Практика	Форма контроля
1	Введение в робототехнику. Техника безопасности.	4	2	2	
1.1	Что такое робот? Три закона робототехники.	2	1	1	Беседа
1.2	Виды роботов	2	1	1	Беседа
2	История развития роботов. Основы строения машин и	8	4	4	
2.1	механизмов. Трение, передача движения.	2	1	1	Беседа
2.2	Энергия эластичной деформации	2	1	1	Беседа
2.3	Мышцы робота – двигатели. Оси и шестеренки.	2	1	1	Наблюдение
2.4	Двигатели, средний двигатель.	2	1	1	Наблюдение
3	Электроника	18	9	9	
3.1	Питание – батарея, аккумулятор.	2	1	1	Беседа
3.2	Мозг робота – микроконтроллер. Управление роботом с ПДУ.	2	1	1	Беседа
3.3	ПДУ	2	1	1	Наблюдение
3.4	Глаза робота – ИК- датчики	2	1	1	Беседа
3.5	Что такое свет. ИК- датчик	2	1	1	Беседа
3.6	Робот, следующий по линии. Следование по линии.	2	1	1	Наблюдение
3.7	Энергия робота –	2	1	1	Наблюдение

	T		1	1	1
	электричество.				
	Принцип удаленного				
	управления.				
3.8	Как избегать	2	1	1	Наблюдение
	столкновения с				
	препятствиями? Обход				
	препятствий.				
3.9	Как избегать	2	1	1	Наблюдение
	столкновения, датчик				
	касания				
4	Конструирование	16	8	8	
4.1	Микроконтроллер	2	1	1	Беседа
4.2	Материнская плата	2	1	1	Беседа
4.3	Вес и подъемные	2	1	1	Беседа
	блоки				, ,
4.4	ПДУ и приемник ПДУ	2	1	1	Наблюдение
4.5	Шестеренки, ИК-	2	1	1	Беседа
	датчики,				
	использование				
	шестеренок с разным				
	количеством зубьев				
	для изменения				
	скорости вращения				
4.6	Трение. ПДУ и	2	1	1	Беседа
1.0	приемник ПДУ	2		1	Беседа
4.7	Блоки. ИК-датчики.	4	2	2	Наблюдение
T. /	Сделать робота	7	2	2	Паозподение
	использующего в				
	своей работе блочный				
	механизм и ИК-датчик				
5		22	11	11	
5.1	Программирование	2	1	1	Беседа
3.1	Включение,	<u> </u>	1	1	веседа
	выключение,				
	сохранение				
5.2	программы.	2	1	1	Побыта натига
5.2	ИК-датчик. Робот,		1	1	Наблюдение
	управляемый с				
<i>5</i> 2	помощью ИК-датчика	2	1	1	11-6
5.3	Трение. ПДУ и	2	1	1	Наблюдение
	приемник ПДУ.				
	Использование				
	принцип трения, и				
E 1	управлять им с ПДУ.	2	1	1	Г
5.4	Использование	2	1	1	Беседа
	программируемой				
	платы.				
	Программирование				
	светодиодов				***
5.5	Использование	2	1	1	Наблюдение
	программируемой				
	платы.				
	Программирование				

	двигателей				
5.6	Использование	2	1	1	Беседа
	программируемой				
	платы.				
	Программирование				
	кнопок				
5.7	Датчик цвета	2	1	1	Наблюдение
5.8	Определение цвета с	2	1	1	Наблюдение
	помощью ИК-датчика				
5.9	Использование	2	1	1	Беседа
	датчиков в				
	робототехнике.				
	Алгоритмы движения				
	по черной линии				
5.10	Промежуточная	6	2	4	Защита
	аттестация. Проект				проекта
	«Обнаружение края				
	стола. Делаем робота,				
	не падающего стола.»				
	Итого	70	35	35	

1.3.2. Содержание учебно-тематического плана

Раздел 1. Вводное занятие. Введение в робототехнику.

Тема 1.1. Что такое робот? Три закона робототехники.

Теория: общий обзор путей развития техники и ее значение в жизни людей. Достижения российской науки и техники. Показ готовых моделей, выполненных воспитанниками объединения. Основные правила техники безопасности. Правила поведения. Порядок и план работы объединения. Дисциплина во время занятий. Модели легкие и простые в изготовлении.

Практика: сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: беседа.

Тема 1.2. Виды роботов.

Теория: материалы и инструменты. Общие понятия и правильные приемы работы. Знакомство с приемами работы с деталями конструктора. Знакомство с видами роботов.

Практика: Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: беседа.

Раздел 2. История развития роботов. Основы строения машин и механизмов.

Тема 2.1. Трение, передача движения.

Теория: Понятие о трении. Что такое пердача движения. Общее представление о процессе создания машины (основные этапы проектирования и производства).

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: беседа.

Тема 2.2. Энергия эластичной информации.

Теория: Понятие об энергии эластичной информации. Общее представление о процессе создания машины (основные этапы проектирования и производства).

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: беседа.

Тема 2.3. Мышцы робота – двигатели. Оси и шестеренки.

Теория: мышцы робота — двигатели. Что такое оси и шестеренки. Общее представление о процессе создания машины (основные этапы проектирования и производства).

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: наблюдение.

Тема 2.4. Двигатели, средний двигатель.

Теория: средний двигатель. Общее представление о процессе создания машины (основные этапы проектирования и производства).

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: наблюдение.

Раздел 3. Электроника.

Тема 3.1. Питание – батарея, аккумулятор.

Теория: Работа с конструктором, понятие о работе с конструкторов, общее представление.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: беседа.

Тема 3.2. Мозг робота – микроконтроллер. Управление роботом с ПДУ.

Теория: Понятие о работе конструкторов и инженеров, общее представление о процессе создания машины (основные этапы проектирования и производства). Мозг робота – микроконтроллер. Управление роботом с ПДУ.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: беседа.

Тема 3.3. ПДУ

Теория: Понятие о ПДУ. Управление роботом с ПДУ.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: наблюдение.

Тема 3.4. Глаза робота – ИК-датчики.

Теория: этапы создания робота. Глаза робота – ИК-датчики.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: беседа.

Тема 3.5. Что такое свет. ИК-датчик.

Теория: что такое свет. Использование ИК-датчика.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: беседа.

Тема 3.6. Робот, следующий по линии. Следование по линии.

Теория: Что такое робот, следующий по линии. Понятие следования по линии.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: наблюдение.

Тема 3.7. Энергия робота – электричество. Принцип удаленного управления.

Теория: Знакомство с понятием энергия робота. Электричество. Что такое принцип удаленного управления.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: наблюдение.

Тема 3.8. Как избегать столкновения с препятствиями? Обход препятствий.

Теория: что такое препятствие, столкновение с препятствием. Обход препятствий.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: наблюдение.

Тема 3.9. Как избегать столкновения, датчик касания.

Теория: Что такое препятствие, столкновение с препятствием.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей. Элементы предварительного планирования предстоящей работы с отбором нужного количества деталей разного назначения для постройки конкретной модели.

Форма контроля: наблюдение.

Раздел 4. Конструирование.

Тема 4.1. Микроконтроллер.

Теория: основные этапы проектирования.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: беседа.

Тема 4.2. Материнская плата.

Теория: Материнская плата. Возможности, применение. Основные этапы проектирования и производства.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: беседа.

Тема 4.3. Вес и подъемные блоки.

Теория: понятие вес и подъемные блоки. Возможности, применение. Основные этапы проектирования и производства.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: беседа.

Тема 4.4. ПДУ и подъемник ПДУ.

Теория: ПДУ. Подъемник ПДУ. Возможности, применение. Основные этапы проектирования и производства.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: наблюдение.

Тема 4.5. Шестеренки. ИК-датчики. Использование шестеренок с разным количеством зубьев для изменения скорости вращения.

Теория: Шестеренки. ИК-датчики. Применение шестеренок с разным количеством зубьев для изменения скорости вращения.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: беседа.

Тема 4.6. Трение. ПДУ и приемник ПДУ.

Теория: Понятие трение, ПДУ и приемник ПДУ.

Практика: Изготовление моделей. Сборка модели по готовым чертежам и из готовых деталей.

Форма контроля: беседа.

Тема 4.7. Блоки. ИК-датчики. Сделать робота, использующего в своей работе блочный механизм и ИК-датчик.

Теория: Знакомство с блоками, блочным механизмом и ИК-датчиками.

Практика: Изготовление робота с блочным механизмом и ИК-датчиком.

Форма контроля: наблюдение.

Раздел 5. Программирование.

Тема 5.1. Включение, выключение, сохранение программы.

Теория: Принцип работы управляемого робота.

Практика: Изготовление робота.

Форма контроля: наблюдение.

Тема 5.2. ИК-датчик. Робот, управляемый с помощью ИК-датчика.

Теория: ИК-датчик. Принцип работы управляемого робота с помощью ИК-датчика.

Форма контроля: наблюдение.

Тема 5.3. Трение. ПДУ и приемник ПДУ. Использование принципа трения, и управление им с ПДУ.

Теория: Трение. ПДУ и приемник ПДУ. Использование принципа трения, и управление им с ПДУ.

Практика: Изготовление робота с использованием принципа трения, и управление им с ПДУ.

Практика: Изготовление робота с использованием принципа трения, и управление им с ПДУ.

Форма контроля: наблюдение.

Тема 5.4. Использование программируемой платы. Программирование светодиодов.

Теория: Что такое программируемая плата. Как программировать светодиоды.

Практика: Создание платы. Программирование светодиодов.

Форма контроля: беседа.

Тема 5.5. Использование программируемой платы. Программирование двигателей.

Теория: Как запрограммировать двигатели. Принципы программирования.

Практика: Программирование двигателя.

Форма контроля: наблюдение.

Тема 5.6. Использование программируемой платы. Программирование кнопок.

Теория: Использование программируемой платы. Программирование кнопок.

Практика: Программирование кнопок на практике.

Форма контроля: беседа.

Тема 5.7. Датчик света.

Теория: принцип работы датчика света.

Практика: Конструирование робота с датчиком света.

Форма контроля: наблюдение.

Тема 5.8. Определение цвета с помощью ИК-датчика.

Теория: Как использовать в робототехнике ИК-датчик.

Практика: Определение цветов.

Форма контроля: Беседа.

Тема 5.9.Использование ИК-датчиков в робототехнике. Алгоритмы движения по черной линии.

Теория: Как использовать в робототехнике ИК-датчики.

Практика: Алгоритмы движения по черной линии.

Форма контроля: беседа.

Тема 5.10. Обнаружение края стола. Делаем робота, не падающего со стола.

Теория: как изготовить робота, не падающего со стола.

Практика: Выполнение итогового проекта «Делаем робота, не падающего со стола».

Форма контроля: защита проекта.

1.4. Прогнозируемый результат.

По окончанию курса обучения учащиеся приобретут такие личностные качества как:

- Навыки работы с различными источниками информации, умение самостоятельно искать, извлекать и отбирать необходимую для решения учебных задач информацию;
- Интерес к техническим видам творчества;
- Уважительное отношение к труду.

У учащихся будут сформированы такие метапредметные компетенции как:

- Критический, конструктивистский и алгоритмический стили мышления, фантазию, зрительно-образную память, рациональное восприятие действительности;
- Углубленные знания о науке и технике как способе рационально-практического освоения окружающего мира.
- Устойчивый интерес к робототехнике, способность воспринимать их исторические и общекультурные особенности;
- Умение решать практические задачи, используя набор технических и интеллектуальных умений на уровне свободного использования;
- Умение добиваться высокого качества изготовленных моделей (добротность, надежность, привлекательность);
- Умение составлять программы для роботов различной сложности.

По окончанию курса учащиеся будут знать:

- Теоретические основы создания робототехнических устройств;
- Элементарную базу, при помощи которой собирается устройство;
- Порядок создания алгоритма программы действия робототехнических средств;
- Правила техники безопасности при работе с инструментом и электрическими приборами.

Учащиеся будут уметь:

- Проводить сборку робототехнических средств с применением конструкторов;
- Создавать программы для робототехнических средств при помощи специализированных конструкторов;
- Разрабатывать творческие проекты робототехнических конструкций.

Раздел 2. Комплекс организационно-педагогических условий

2.1. Календарный учебный график

Количество учебных недель – 35

Количество учебных дней – 70

Дата начала учебного периода: 02.09.2024

Дата окончания учебного периода: 31.05.2024

2.2. Условия реализации программы

Материально-техническое обеспечение программы

Компьютерный класс — на момент программирования робототехнических средств, программирования контроллеров, настройки самих конструкторов, отладки программ, проверка совместной работоспособности программного продукта и модулей робототехнического образовательного набора Клик и конструктора программируемых моделей инженерных систем Applied Robotics Pro.

Наборы:

- Робототехнический образовательный набор Клик;
- Конструктор программируемых моделей инженерных систем Applied Robotics Pro
- программный продукт по количеству компьютеров в кабинете;
- поля для проведения соревнований роботов 1 шт.;
- ящик для хранения конструкторов 1 шт.

Формы аттестации/контроля

Предусматриваются различные формы подведения итогов реализации дополнительной образовательной программы:

- соревнования;
- подготовка рекламных буклетов о проделанной работе;
- отзывы родителей учащихся на сайте учреждения;
- анкетирование учащихся и их родителей;
- выступления с проектами.

2.4. Оценочные материалы

Входной контроль проводится для учащихся в течение двух недель с начала изучения образовательной программы.

Цель: выявление стартовых возможностей и индивидуальных особенностей учащихся в начале цикла обучения.

Задачи:

- Прогнозирование возможности успешного обучения на данном этапе;
- Выбор уровня сложности программы, темпы обучения;
- Оценку дидактической и методической подготовленности.

Методы проведения:

- Индивидуальная беседа;
- Тестирование;
- Анкетирование.

Текущий контроль проводится в течении года образовательной программы.

Цель: отслеживание динамики развития каждого учащегося, коррекция образовательного процесса в направлении усиления его развивающей функции.

Задачи:

- Оценка правильности выбора технологии и методики;
- Корректировка организации и содержания учебного процесса.

Метод проведения:

• тестирование.

Промежуточная/итоговая аттестация проводится в конце изучения образовательной программы.

Цель: подведение итогов освоения образовательной программы.

Задачи:

- анализ результатов обучения;
- анализ действий педагога.

Метода проведения:

- творческие задания;
- тестирование;
- выставка работ;
- проект.

2.5. Методические материалы

Методическое обеспечение дополнительной образовательной программы Обеспечение программы предусматривает наличие следующих методических видов продукции:

- электронные учебные пособия;
- видеоролики;
- информационные материалы.

По результатам работ будут создаваться фото — материалы, которые можно будет использовать не только в качестве отчетности о проделанной работе, но и как учебный материал для следующих групп учащихся.

2.6. Список литературы

Список литературы для педагога

- 1. Бербюк, В. Е. Динамика и оптимизация робототехнических систем [Текст]: учебное пособие / В.Е. Бербюк. М.: Наукова думка, 2014. 192 с.
- 2. Вильяме, Д. Программируемый робот, управляемый с КПК. [Текст]: учебное пособие /Д. Вильяме; пер. с англ. А. Ю. Карцева. М.: НТ Пресс, 2006. 224 с; ил. (Робот своими руками).

- 3. Каляев, И. А. Однородные нейроподобные структуры в системах выбора действий интеллектуальных роботов. [Текст]: учебное пособие / И.А. Каляев, А.Р. Гайдук. М.: Янус-К, 2015. 280 с.
- 4. Карпов, В.Э. «Мобильные мини роботы» Часть І Знакомство с автоматикой и электроникой. [Текст]: учебное пособие / В.Э. Карпов. М: 2009. 154 с.
- 5. Копосов, Д.Г. Первый шаг в робототехнику. [Текст]: учебное пособие / Д.Г. Копосов. М.: БИНОМ. Лаборатория знаний, 2012. 89 с.
- 6. Филиппов, С.А. Робототехника для детей и родителей. [Текст]: учебное пособие / С.А.Филиппов. СПб.: Наука, 2010. 213 с.
- 7. Юревич, Ю.Е. Основы робототехники. [Текст]: учебное пособие / Ю.Е. Юревич. СПб.: БВХПетербург, 2005. 213 с.

Список литературы для учащихся

- 1. Бейктал, Дж. Конструируем роботов на Arduino. Первые шаги. [Текст]: учебное пособие / Дж. Бейктал. М.: Лаборатория знаний, 2016. 320 с.
- 2. Корсункий, В. А. Выбор критериев и классификация мобильных робототехнических систем на колесном и гусеничном ходу. [Текст]: учебное пособие / В.А. Корсункий, К.Ю. Машков, В.Н. Наумов. М.: МГТУ им. Н. Э. Баумана, 2017. 862 с.
- 3. Корягин, А. В. Образовательная робототехника Lego WeDo. [Текст]: сборник методических рекомендаций и практикумов / А.В. Корягин. М.: ДМК Пресс, 2018. 254 с.
- 4. Крейг, Джон Введение в робототехнику. Механика и управление. [Текст]: монограмма / Джон Крейг. М.: Институт компьютерных исследований, 2017. 564 с.
- 5. Тывес, Л. И. Механизмы робототехники. Концепция развязок в кинематике, динамике и планировании движений. [Текст]: учебное пособие / Л.И. Тывес. М.: Ленанд, 2019. 208 с.
- 6. Хиросэ, Шигео Бионические роботы. Змееподобные мобильные роботы и манипуляторы. [Текст]: монограмма / Шигео Хиросэ. М.: Институт компьютерных исследований, 2018. 256 с.

Интернет ресурсы

http://www.robosport.ru/ - сайт «Робототехника».

http://www.wroboto.org/ - Международные состязания роботов. http://nnxt.blogspot.com/ - робототехника для школ Ниж. Новгорода. http://www.rostovrobot.ru/ - секция «Робототехника».

http://robotor.ru — блог о роботах. http://www.roboclub.ru/ - робоклуб